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Mechanistic (or process-| based™) models have been increasingly used in
wetlands to assist in understanding the system dynamics and quantify the
wetland responses to a variety of changes in order to support the management
strategies. A key question, however, is how complex of a biogeochemical
model structure is appropriate to make reliable predictions based on the
available data and knowledge of the system. Modeling is most effective when
the reasons for selection of a given model are clearly understood.

Generally, the model structure is formulated
based on judgments (which are often implicit)
about the process details that need to be
considered. Here, we examine five models of
varying complexity that describe phosphorus
(P) biogeochemical cycling in one of the
treatment cells of Stormwater Treatment Area 1
West (STA 1W). The hypothesis evaluated here
is that the biogeochemical model prediction
accuracy in treatment wetlands is i as
the modeled process complexity increases, but
the benefits of increased accuracy are small
compared to the costs of added complexity.
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Fig. 1. Conceptual illustrations of
relation of modeling efforts (i.c.,
model complexity) to prediction
accuracy and model effectiveness

Study Objectives

< To develop five P cycling models in different levels of process complexity

(from low-level to high-level mechanistic exp]ananon of P cycling
), coupled with two-di; 11 d ic model in a Cell 4,

STA IW of northern Everglades.

<+ To quantify prediction errors for each complexity.

“*To evdludte the model complexity and identify the ‘bea! level of process
C which is optimal for p outflow total P
concentrations and that balances the benefits of increased efforts that is
needed to setup, calibrate and validate the model based on available data.

Study Site

Fig. 2. Study site: (a) location map (b) model mesh and bed elevation (c) vegetation map. The
mean bed elevation of raster cells for each mesh element was used.

STA 1W, formerly known as Everglades Nutrient Removal (ENR) Project, is
located along the northwestern boundary of Water Conservation Area 1 in
central Palm Beach County, Florida. Cell 4 is one of treatment cells of STA
1W which is dominated by submerged aquatic vegetation (SAV) and
comprised a total of 147 ha (363 acres) marsh area. The bottom elevation was
approximately ranged from 2.7 to 3.2 m (1929NGVD).

Hydrologic Model: Regional Simulation Model (RSM), developed by South
F]onda ‘Water Management District (SFWMD) (SFWMD, 2005).

“» Two-dimensional modeling framework with heterogeneous inputs.

Transport and Reaction Model: Regional Simulation Model-Water Quality
(James and Jawitz, 2007).

< Internally coupled with RSM.

® Hydrodynamic calibration: Cell 4 tracer data (Dierberg et al., 2005).

® Validation: Outlet discharge at G256 structure from 1995 to 2000.

= Additional water budget and transport processes validation: Chloride
(assumed to be conservative tracer) concentrations at two internal monitoring
stations from 1995 to 1999.

® P cycling model calibration/validation: Outflow total P concentrations at
G256 structure.

Data:

¢ The bulk of the field measurement data (hydrological, meteorological and
water quality) employed in this study were collected by SFWMD and
publicly available on their environmental database, DBHYDRO
(http://my.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu).

«» Atmospheric deposition of total P was based on the study conducted at ENR
Site (Ahn and James, 2001).

¢ Spatial data e.g. topography, vegetation, and initial soil total P were obtained
from SFWMD personnel.

Biogeochemical Model Structures
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Fig. 3. Phosphorus cycling models with increasing complexity: (a) Model I (M1D) - settling rate (b)
Model 2 (M2D) - settling and release between water column and soil (c) Model 3 (M3D) - exchange
between water column and biomass (DMSTA2; Walker and Kadlec, 2005) (d) Model 4 (M4D)-
exchange between water column, soil and biomass (¢) Model 5 (M5D) - exchange between water
column, soil, SAV and periphyton biomass.

Characterization of Complexity Index

The complexity of the model was determined by using the level of detail in
the processes that make up the model (number of calibration parameters/state
variables), and spatial descriptions (Costanza and Sklar, 1985).

where C; = complexity index for mode i (e.g.,
compartments/parameters and space); caling factor
for model 7 which reflects to the relative difficulty in
adding processes, and mesh elements in space.
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¢ Prediction accuracy index was determined based on the deviation
between model simulated values and observed data (i.e., modeling error).

“+ Two types of objective functions were used to estimate modeling error:
= Root Mean Square Error (RMSE)
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where S and O, simulated and observed values for each sampling event #;
k, model application mode (i.e., calibration, validation 1, and validation 2);
m, total number of observations for each mode ; E, ,, total mean
normalized error for each model m; m;, application mode for each model
m; ¢, prediction accuracy index for each model m.

Model Effectiveness

The best model is the one that describes accuracy of model prediction in
relation to the efforts needed to develop the model. To determine the
rank of the model, we developed an index of model effectiveness. The
index was calculated as the “coefficient of effectiveness” for each
model by normalizing the prediction accuracy with complexity index.

where ¢, coefficient of effectiveness for each model

m; and C,, complexity index (i.e., modeling efforts)
for each model .

%+ Models generally capture the temporal variation of outflow total P
concentrations in Cell 4, STA 1W (Fig. 4).

« Model performance statistics (RMSE and MAE) are based on outflow
total P concentrations at G256 structures (7able 1).
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Fig. 4. Observed and simulated outflow total phosphorus
for five
validation periods

and

Table 1: Assessment of simulations of outflow total phosphorus concentrations (Note:
*Validation 2 includes period of two major hurricanes (i.c., Frances and Jeanne))

Calibration Validation 1 Validation 2%

Model Jan 1995 - Dec 1998 Jan 1999 - Dec 2000 Jan 2003 - Dec 2004
Type D RMSE MAE RMSE MAE RMSE MAE
G (gl @) gl D) el
Model I MID 123 90 215 144 1198 545
Model 2 M2D 103 77 168 126 96.3 4.8
Model 3 M3D 9.6 74 134 14 468 365
Model 4 M4D 8y 74 15.7 124 87.8 418
Model 5_MSD 99 77 17.1 13.0 99.8 46.9

Table 2: Assessment of complexity index, prediction accuracy and effectiveness

Model

for each model.

Tope €< € Cn Eun  $u  en
MID 2 165 93 093 007 08
M2D 74 165 120 077 023 19
MID 123 165 144 063 037 26
MAD 167 165 166 073 027 16
MSD 20 165 183 078 022 12

C, = complexity index for biogeochemical process des
for spatial descriptions, which is used constant because same spatial complexity was used

= complexity index

Model Complexity
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Fig. 5. Effects of model complexity on (@) prediction error and (b) accuracy and effectiveness

Conclusion and Future Work

¢ Results show that there is trade-off between appropriate level of
process-complexity and prediction accuracy. As the model becomes
more complex in terms of adding state variables/parameters,
prediction accuracy is initially increased but lowered for more

« It appears that there is an optimum complexity beyond which
benefits of increasing process complexity is less effective.

«+ Future work involves developing five additional spatially lumped
models wnh blcgeochemlcal model structures dlscussed above, and

Model Complexity

model eff
model power).

* Costanza, R., Sklar, F.H., 1985.
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